Performance enhancement of Ionic structure in liquids confined by
dielectric interfaces (A nanoconfinement framework)

Kadupitiya Kadupitige, UID: 2000253911, Uname: jasakadu
Final Report for Research Assistantship in Fall semester 2017

Abstract— Computationally intensive simulations that use
complex molecular dynamics (MD) concepts to propagate
the ions are required to determine the ionic structure of
nanoparticles confined between surfaces. Nanoconfinement sim-
ulation framework designed by Jadhao et al. [1] is one
such simulation framework allowing worldwide researchers to
observe the density profiles and behavior of nanoparticles.
This research presents a hybrid implementation that utilizes
MPI for distributed memory parallelism and OpenMP for
shared memory parallelism for performance enhancement of
the nanoconfinement framework. Several memory optimization
techniques were adopted to reduce the computational time of
the framework. Implementation details of MPI, OpenMP, and
Hybrid MPI/OpenMP parallelization of the nanoconfinement
simulation framework are provided. Using the hybrid approach
and memory optimization techniques, computation time was
reduced from 12 hours to 13.25 mins yielding a maximum
speedup of 54.34.

I. PROBLEM STATEMENT

The ionic structure of nanoparticles confined between
biological and synthetic surfaces determines the outcome
of many synthetic and biological systems such as colloidal
dispersions, emulsions, hydrogels, DNA, cell membranes and
proteins [1]. These nanoparticles can be considered as salt
ions in most of the biological systems [1]. Understanding
the behavior of ionic structures in such systems are crucial
for the enhancement of many industrial applications such as
double-layer supercapacitors for energy storage and advance
formulation science for protein-based pharmaceutical prepa-
rations and cellular therapies [1, 2]. Figure 1 illustrates an
ionic structure in liquids confined by dielectric interfaces.

Jadhao et al. [1] has created a simulation framework
(Nano confinement framework) and a science gateway (Nano
confinement gateway) to experiment and investigate a dif-
ferent kinds of ionic structures and environmental attributes
including ion valency and salt concentration using standard
and advanced molecular dynamics (MD) methods for non-
polarizable surfaces and dielectric interfaces respectively.
This framework is written in C++ programming language by
adopting the sequential programming model. These standard
MD simulations are computationally intensive, and it takes
nearly 12 hours to run a simulation for one million steps (1
Nano second of real time MD) with 422 nanoparticles using
standard set of parameters to get the density profile of the
ionic structure [1, 3]. Currently, the framework (the science
gateway) is being used by different individuals all over the
word for educational purposes for fewer ions and less number
of steps. Hence, it is necessary that the simulation time be
reduced in order to enable particle dynamics researchers

to carry out advance MD simulations as well as to allow
more particle dynamics researchers to engage with the Nano
confinement framework.

A4

o
®

o

o ©

Fig. 1. An Example for Ions (positive-blue and negative-green) distribution
in liquid confined by two dielectric interfaces

In this research, the possibilities of performance opti-
mization of existing Nano confinement framework is studied
using shared memory parallelization, distributed memory
parallelization and the hybrid approach using both shared
memory and distributed memory.

II. LITERATURE REVIEW

The techniques used for parallelizing different kind of
simulation frameworks or applications could be broadly
categorized into three approaches; shared memory model
(OpenMP), distributed memory model (MPI) and hybrid
model (OpenMP and MPI) [4, 5]. OpenMP, MPI, and hybrid
MPI/OpenMP parallel programming on clusters of multi-core
SMP nodes, have been in use for many years [6, 7, 8, 9,
10]. This study uses these techniques, and hence, they are
discussed in this section.

Rabenseifner et al. [6] have investigated a comprehensive
evaluation of different performance improvement factors and
degradation factors in high-performance computing (HPC)
with respect to a modern hierarchical hardware design. Due
to the reduced communication and memory consumption,
or improved load balance evident in hybrid (MPI plus
OpenMP), this research has employed pure Message Pass-
ing Interface (MPI), pure OpenMP and hybrid (MPI plus

OpenMP) to pinpoint the cases where a hybrid programming
model could be the most effective solution. They claim
that parallel programming model should consider combining
distributed memory parallelization (on the node interconnect)
with shared memory parallelization (inside each node) [6].

Recent research done by Mahinthakumar et al. [7, 8] have
applied parallel programming approach for an implicit finite-
element methodology in groundwater transport simulations
using hybrid MPI-OpenMP programming model. They have
used a domain decomposition strategy to decompose their
original program to enable parallelization for distributed
memory model using MPI [7, 8]. Researchers have imple-
mented straightforward loop-level parallelism with several
loop modifications using OpenMP directives inside each
MPI process to enable shared memory model as they tested
their simulations in symmetric multiprocessing (SMP) nodes
[7]. Parallel performance results were compared using four
different architectures and researchers claim that the hybrid
approach outperformed both pure MPI and pure OpenMP
performance by giving promising results when using it with
SMP cluster architectures [7].

Tang et al. [9] have also used OpenMP, MPI hybrid
approach for groundwater model calibration using multi-core
computers. According to the researchers, the computational
model for groundwater calibration utilizes between one hun-
dred to one thousand forward solutions, each entailing many
nonlinear partial differential equations, thereby leaving a
computationally intensive problem to solve [9]. First, they
profiled the sequential program using GPROF and identi-
fied a single parallelizable loop account for over 97% of
the total computational time. Researchers have adopted the
OpenMP programming model for the identified parallelizable
loop and the MPI programming model for parallelizing the
Jacobian calculation and lambda search in their ground water
calibration algorithm [9]. Reported results indicate that the
calibration time was reduced from weeks to a few hours by
using this hybrid approach in 100200 compute cores [9].

A research done by Mininni et al. [10] focused on per-
formance improvements of Pseudospectral computations for
fluid turbulence using MPI for distributed memory paral-
lelism and OpenMP for shared memory parallelism. Their
approach focused on achieving exceptionally high Reynolds
numbers in pseudospectral computations of fluid turbulence
in massively parallel processing systems [10]. Researchers
have used domain decomposition techniques to achieve
numerical discretizations of the problem to implement the
hybrid parallel programming approach on top of the original
sequential program. They claim that the hybrid methodology
provides good scalability up to 20,000 compute nodes with a
maximum efficiency of 89%, and a mean of 79% [10]. Fur-
thermore, they have shown that the cost of communication
increased with the number of MPI processes, and the hybrid
scheme allowed to reduce the number of MPI processes by
utilizing OpenMP programming model. Researchers further
claim that for a given workload per MPI task, the hybrid
scheme would clearly outperform the pure MPI version in
terms of speed up and computation time [10].

As described above, most of the parallel programming
techniques applied to simulations and science applications
are focused on pure MPI, pure OpenMP and hybrid OpenMp-
MPI programming models. Moreover, hybrid techniques
have given comparable, or even better results than pure
shared memory(OpenMP) or pure distributed memory (MPI)
approaches in most cases [7, 8, 10]. There are also many
researches which are focused on performance enhancement
of different simulations. Based on the review of the liter-
ature, there has not been a single study that has focused
on performance enhancement of simulation frameworks for
ionic structure in liquids confined by dielectric interfaces.
Due to these facts, this research will also employ the three
approaches mentioned above in order to achieve performance
enhancement of the Nano confinement framework.

III. APPLICATIONS OF NANOCONFINEMENT
FRAMEWORK

Nanoscale systems and materials are hard to model using
real world experiments. Modeling and simulation are the
best chance to understand and draw inferences about the real
system [1]. The main applicational use of this framework is
designing and experimenting on new soft materials by sim-
ulating soft matter systems in drug delivery, soft electronics,
and energy. Example applications are super capacitors and
synthetic red blood cells [1].

IV. METHODOLOGY

A. Overview of Nano confinement serial algorithm

The nanoconfinement code used in this research was
developed by Jadhao et al. [1] to simulate ions confined by
the dielectric interfaces using MD methods. This program
assumes infinite extension of the interfaces by using periodic
boundary conditions in both x and y directions in the 3D
space [1]. The program also considers the system of ions
and liquid confined within the two surfaces as a rectangle
box with volume V while maintaining periodic boundaries
as shown in figure 1 and equation 1 [1].

V=HxLxL @))

where H=3 nm, L= length of the interface along the x and
y directions.

The total number of ions that associate with the simulation
is defined as N, which is a combination of negative ions
and positive ions (Ny + Np). The ions are modeled as soft
sphere of radius o (¢ = lg/2 = 0.357nm, where g is
the Bjerrum length in water at room temperature) interact
via a purely repulsive Lennard-Jones (LJ) potential. The
interactions between ions and interfaces are also considered
as purely repulsive LI potential. The ions also interact with
each other using the Coulomb potential energy as given in
the equation 2 [1].

_qi*xqixlp

Ue 2

Tij

Where ¢; and g; are the charges on the ion ¢ and ion j
respectively, and 7;; is the distance between considered ions.

Researchers have assumed that the liquid between the
confined plates as water and all simulations are performed at
room temperature (298 K) in all their experimental simula-
tions. Since the experiments are in nanoscale, reduced time
unit (7) has been used throughout the simulations as shown
in equation 3 [1].

r= {L”Q B
kpT
where m is the ionic mass, o is the radius of ion, kp is
the Boltzmann constant and 7" is the room temperature.

Velocity verlet algorithm [11] has been used for ionic
propagation through the medium with a timestep of At =
0.00057. Researchers who have worked in nanoconfinement
framework have found that 1 million-time steps are the least
number of steps in which the system reaches an equilibrium
[1].

The pseudocode of the nanoconfinement program is shown
in figure 2 [1]. The program starts with initializing and
calculating various important parameters relevant to MD.
Ionic propagation starts with pre-calculated parameters. For
each step, it first updates the velocity for half time, then it
updates the positions of the ions. Next it calculates the forces
on each ion and finally it updates the velocity for the next
half time. It provides the ionic structure of the system when
all the time steps are computed.

3)

It, v, r, ~] = mdlnitialization {J;
for time steps from 1 to 1,000,000
v = updateVelocity(f, v, At/2, ™)
v (t+ Atf2) € v(t);
r= updatePositions(r, v, At, ™)
r(t+At) € rit);
f= mdCalculateForce (~);
v= updateVelocity(f, v, At/2,)
v (t+ Atf2) € v(t);
computeEnergy ();

computeDensityProfile ();

Fig. 2. Pseudocode of the nanoconfinement program

B. Inputs/Outputs of the program

Inputs to the program can be divided in two categories;
physical parameters and computational parameters. Figure
3 shows the inputs of the program. The program produces
the ionic structure in the form of density profile at the end
of the simulation. The density profile for different input

parameters is shown in figure 4. It also provides energy
distribution, temperature distributions, ion positions with
respect timestamp, etc.

Physical parameters

-X, -Y, -Z : Box dimension in nanometers, default values are (11.424, 11.424, 3).
-p, -n : Positive and negative valency inside, default values are (1,-1).

-c : Salt concentration inside, default value is 0.1.

-d : Salt ion diameter inside, default value is 0.714.

-g : Interface discretization width, default value is 4.

-e, -E dielectric constants inside and outside, default values are (80.1, 80.1).
-T time step value in md 0.0005

Computational parameters

-S : Time steps used in simulation, default value is 1,000,000.

-P : Density profile production begin value, default value is 100,000.

-F : Sampling frequency for density profile, default value is 100.

-x: Compute additional values for position, energy, etc., default value is 1000.

-w : Write density interval value, default value is 100,000.

-m : Snapshot saving parameter for movie, default value is 1000.

Fig. 3. Inputs for the nanoconfinement program

&)
[

Fig. 4. Density profile of positive ions for an electrolyte (at C = 0.1)
confined within two non-polarizable planar interfaces.

C. Performance considerations/Issues

As explained in the problem statement, the standard MD
nanoconfinement simulation takes approximately 12 hours
to run a simulation for one million steps using the standard
set of parameters to obtain the density profile of the ionic
structure. Even though the nanoconfinement framework has
been deployed as a science gateway, it is not used for actual
research experiments due to the fact that the runtime is high
even for a simulation of smaller scales (i.e. with the standard
set of parameters).

The sequential program was evaluated for performance
profiling in order to determine where it is spending its time.
The nanoconfinement program was tested in the Indiana uni-
versity BIGRed?2 cluster, which features a hybrid architecture
based on two Cray Inc., and it runs a proprietary variant of
Linux called Cray Linux Environment [12]. The performance
profiling was done using the Performance Counters for Linux

(PERF) [13] and figure 5 shows the output obtained from the
perf report. This report clearly shows that the nanoconfine-
ment program was spending 64.33% of its total computation
time on calculating the forces between the ions for each
time step of the simulation (see mdCalculateForce function in
figure 2 and formdcalculateforce in figure 5). The report also
revealed that no other major function call takes considerable
computation time compared to force calculation. The second
noticeable computation time was taken by object creation
procedures, whereas the third highest computation time was
consumed by basic vector operations such as addition, sub-
traction and scalar multiplication.

There are three major tasks in the nanoconfinement pro-
gram such as update position, update velocity and force
calculation. The time complexities for update position, up-
date velocity and force calculation are O(n), O(n), O(n?)
respectively. Performance profiling results are verified if the
time complexities of those sub routines are considered. As a
result, this study focused on optimization and parallelization
of the force calculation subroutine.

on ¢ md
nd_simulation _c
% md_simulation_c
% md_simulation_c

nd_simulation_c
nd_simulation_c

ARTICLE,
CTOR3D (long double, long double,
erator- (VECTOR3D consté&)
erator+(VECTOR3D consté&)
erator” (long double)

OI<PARTICL

ble, int, double,
::allocator<PARTICL

d nfined_ions [
. nd ¥ L _confined_ions

2% md_simulation_c libm-2.11.3.s0
nd_simulation_c md_simulation_confined_ions [.] energy_functional (std::Vvector<PARTICLE, std:
nd_simulation_c [kernel.kallsyms] [k] x86_pmu_start
nd_simulation_c md_simulation_confined ions [.] sqrteplt
md_simulation_c md_simulation_confined ions [.] std::Vector<VERTEX, std::allocator<VERTEX> >
nd_simulation ¢ [dvsof] [k] 0x15083
nd_simulation_c libc-2.11.3.s0 [.] __printf fp
nd_simulation_c md_simulation_confined ions [.] ataneplt
nd_simulation_c [kgnilnd] [k] 0x14481
nd_simulation ¢ [lnet] [k] 0x11690
nd_simulation_c 1libm-2.11.3.s0 [.] _amd bdozr_log
2% md_simulation_c [kgni_gem] [k] Dx3ad28
2% md_simulation_c [kernel.kallsyms] (k] platform_device_add
2% md_simulation_c md_simulation_confined ions [.] PARTICLE::new_update_velocity(double, THERMO
2% md_simulation ¢ md_simulation_confined ions [.] void std::_COnStruct<VECTOR3D, VECTOR3D>(VEC
2% md_simulation_c [kernel.kallsyms] [k] attribute container_remove_attrs

Fig. 5. Distribution of computational time among subroutines for the
nanoconfinement program

D. Approach taken to parallel algorithm version

According to the performance profiling, the force calcu-
lation subroutine was identified as the most time-consuming
function. It also found to be the only function which had a
time complexity of O(n?) for a single time step iteration. The
force on an ion is a combination of five force elements: force
due to coulomb potential energy - O(n?), force calculated
for purely repulsive LJ potential - O(n?), force due to
interactions with left wall - O(n), force due to interactions
with right wall - O(n) and safe force calculation for dummy
particles considering both walls - O(n).

This study employs three parallelization approaches. The
distributed memory approach was tested with MPI. The
shared memory parallelization was tested with OpenMp. For
the third approach, the hybrid model, parallelization was
achieved by combining MPI and OpenMP approaches.

1) Distributed memory parallelization with MPI: The
MPI implementation of nanoconfinement program uses one-
dimensional (1D) problem decomposition considering ions
position vector. The nanoconfinement program propagates by

calculating subroutines such as first half velocity, position,
force and the second half velocity for each iteration. It is not
effective to decompose the problem for all these subroutines
as the highest computation time is consumed by the force
calculation. The MPI communication calls and the overhead
per iteration will increase if the problem is decomposed
for all subroutines. Figure 6 shows the procedure applied
to enable the distributed memory parallelization with MPIL.
Figure 7 is the pseudocode for calculating MPI discretization
parameters (boundary conditions) for the problem decompo-
sition. In this approach, the simulation propagation happens
sequentially in every process until each program inside the
processes needs to calculate the current forces based on the
ion location and other MD parameters. Inside each of these
processes, the force (partial force calculation) calculation
happens only for the boundary parameters defined for that
particular process. After the partial force calculation has been
completed as explained in the figure 6, the MPI collective
operation MPIAllgather was used to distribute the partial data
of the forces among all processes. Subsequently, each process
calculates other required MD parameters inside the process
and move on to perform the next iteration in the propagation
simulation.

2) Shared memory parallelization with OpenMP: Even
though the shared memory parallelization approach with
OpenMP is based on a state of art loop level parallelism, few
modifications were made to the computationally intensive
loops inside the force calculation procedure so as to improve
the shared memory parallelization. As explained in the se-
quential algorithm section, the force calculation contains five
other sub routines which contained nested for loops causing
the time complexity of O(n?). Firstly, the straightforward
loop level parallelism is achieved by implementing OpenMP
compiler directives on all nested loops. The OpenMP paral-
lelization is applied at the outermost loops to reduce OpenMP
overheads, such as thread generation and data copy. The
dynamical distribution and the ordering of the loop index
from a large to a small task are applied to obtain better load
balancing. Several memory optimization techniques such
as using C-language arrays instead of C++ vectors (as it
favors data locality) were used to improve the efficiency
of the program [14]. Repetitive memory allocations inside
the force calculation procedure were moved to the outside
of the force calculations as force calculation routines had
time complexity of O(n?). Figure 8 shows the OpenMp
parallelization applied to the force calculation subroutine due
to coulomb potential energy.

As these O(n?) force calculation subroutines contained
repetitive force calculation between ions, a force matrix
calculation approach was also tried in order to reduce the
time complexity to O(n?/2). Instead of accumulating all
the force elements for one outer loop iteration, the force
matrix was calculated only for the upper diagonal element
of the matrix. This approach was successful because the force
calculation equation was computationally time consuming as
it contained square root of vector elements.

Start

Start Start
Process 0 (Master) Process 1 Process K
y
Initialization,Boundary

Initialization,Boundary

calculation and discretization calculation and discretization

Initialization,Boundary
calculation and discretization

Simulation Propagation

y
1st Half velocity 1st Half velocity 1st Half velocity
7] and position update and position update and position update g
| |
Force Calculation \P \v
partial force
vector lon_i_Pos lon_j_Pos lon_j_Pos lon_j_Pos

partial force
vector

partial force
vector

MPI A”gather MPI Collective operation

r

DlliQSG?jﬂ 01234567jE|

Final force vctor

0f1|2|3(4|5|6|7 JEI
Final force vctor

Final force vetor

Second half velocity update

Second half velocity update Second half velocity update

Yes

Produce density profile, etc
End the simulation

Fig. 6. Distributed memory parallelization approach with MPI

range = problemSize / numberOfProcesses + 1.5;
lowerBound = processID * range;
upperBound = (processID + 1)*range - 1;
if (processID == numberOfProcesses - 1)
upperBound = problemSize - 1;
if (numberOfProcesses == 1)

lowerBound = 0;

upperBound = problemSize - 1;

Fig. 7. Pseudocode for calculating MPI discretization parameters (boundary conditions)

#pragma omp parallel for schedule(dynamic) default(shared) private(i, j,)
for (i = 0; i < ion.size(); i++) {
parameterinitialization();
for (j=0; j <ion.size(); j++) {
CPEForceCalculation();
}

forceVectorscaling();

Fig. 8. OpenMp parallelization applied for force calculation subroutine
due to coulomb potential energy

3) Hybrid MPI/OpenMP parallelization: Following
Rabenseifner et al. [6], the hybrid masteronly model was
tested by combining the distributed memory MPI approach
and the shared memory OpenMP approach. The hybrid
masteronly model uses one MPI process per node and
OpenMP on the cores of the node, with no MPI calls
inside parallel regions. This hybrid model enables the
domain decomposition under a two-level mechanism. This
approach is applied for the force calculation subroutine
in the nanoconfinement program. On the MPI level, a
coarse-grained domain decomposition is performed using
boundary conditions as explained in figure 6 and 7. The
second level of domain decomposition is achieved through
OpenMP loop level parallelization inside each MPI process.
This multilevel domain decomposition has advantages over
pure MPI or pure OpenMP, when cache performance is
taken into consideration. This strategy also provides the
maximum access locality, a minimum of cache misses,
non-uniform memory access (NUMA) traffic and inter-node
communication [6].

V. RESULTS AND DISCUSSION

This section explains the application performance of
OpenMP, MPI, and hybrid parallel programming models
on nanoconfinement program. Nanoconfinement program
was benchmarked using BigRed II cluster nodes (Maximal
achieved performance of 596.4 teraFLOPS, features a hybrid
architecture based on two Cray, Inc., 344 XE6 (CPU-only)
compute nodes and 676 XK7 “GPU-accelerated” compute
nodes, providing a total of 1,020 compute nodes, 21,824
processor cores, and 43,648 GB of RAM. Each XE6 node
has two AMD Opteron 16-core Abu Dhabi x8664 CPUs and
64 GB of RAM; each XK7 node has one AMD Opteron
16-core Interlagos x8664 CPU, 32 GB of RAM, and one
NVIDIA Tesla K20 GPU accelerator) [15].

As explained in the problem statement section, the stan-
dard MD simulation takes approximately 12 hours to com-
plete a simulation using the default parameter set defined
in figure 2. Using the memory optimization techniques
discussed in OpenMP shared memory parallelization, the run
time of the simulation was reduced to approximately 7 hours.
The following sub sections describe the performance results
for each approach tested in this research. All the experiments
are done with the parameter set defined in figure 2.

A. Pure MPI Performance

Figure 9 shows strong scaling plot of pure MPI perfor-
mance with 424 ions and 1 million time steps in nanoconfine-
ment program. Even though the Ideal strong scaling graph
should increase the speedup as the number of processes
increases, it seems that the nanoconfinement program strong
scale well up to 48 processes with maximum speedup of
16.80. This may be due to the overhead of running multiple
processes on 424 ions (1 Million time steps) is higher than
the parallelization achieved through the MPI model.

Table 1 shows the weak scaling of pure MPI performance
with different number of ion sizes and 1 million time steps.
From table 1, it is clear that the problem size is proportional
to the MPI processes which are used to achieve the maximum
speedup. The maximum speedup of 41.86 was obtained for
512 MPI processes when program is executed with 4242
ions.

Pure MPI performance

Speedup

o] 20 40 60 30 100 120 140

Number of MPI Processes

Fig. 9. Strong scaling plot of pure MPI performance with 424 ions and 1
million time steps.

TABLE I
COMPUTATIONAL TIME (MINUTES) AND SPEEDUP (IN PARENTHESES) OF
PURE MPI PERFORMANCE WITH 1 MILLION TIME STEPS.

Procs 64 128 256 512
Tons=424 51(13.21) 55(12.25) 60(11.23) 81(8.32)
Tons=848 134(26.20) || 123(28.55) 130(27.02) 178(19.73)
Tons=1272 || 250(24.00) || 222(27.03) || 228(26.32) || 274(21.90)
Tons=1696 || 431(23.22) || 363(27.58) || 351(28.52) || 421(23.78)
Tons=2120 || 634(23.51) || 524(28.44) || 492(30.29) || 572(26.06)
Tons=4242 || 2378(26.5) 1843(34.2) 1643(38.4) || 1509(41.8)

B. Performance of Pure OpenMP

Figure 10 shows the strong scaling plot of the perfor-
mance of pure OpenMp O(n2) with 424 ions and 1 million
time steps in nanoconfinement program. It is clear that the
speedup converges at around 10.7 with 16 OpenMP threads.
The speedup increased only up to 16 threads. Since this
benchmarking was done using BigRed II 676 XK7 ”GPU-
accelerated” compute nodes which have 16 internal cores
per node, the strong scaling results were in line with the
expectations. It seems that GPU node is being oversubscribed
when more than 16 threads are used.

Figure 11 shows the strong scaling plot of the performance
results of pure OpenMp O(n?/2) with 424 ions and 1

million time steps in the nanoconfinement program. Using
this approach, the sequential program runtime reduced from
418 mins to 350 mins. The maximum speedup of 11.30
was obtained using this approach. However, the speedup
improvement was not significant in comparison to the O(n2)
approach. This was due to the fact that the force matrix
procedure used in the O(n?/2) approach contained many
2D array accesses and writes compared to the previous 1D
array force vector in the O(n?) approach.

Performance Results of Pure OpenMP O(n?) approach

0 5 10 15 20 23 30 35 40 45
Number of OpenMP threads

Fig. 10. Strong scaling plot of the performance results of the pure OpenMp
O(n?) approach, with 424 ions and 1 million time steps.

Performance Results of the Pure OpenMP O(n?/2) approach

12.00

10.00

0 5 10 15 20 25 30 35 40 45
Number of OpenMP threads

Fig. 11. Strong scaling plot of the performance results of the pure OpenMp
O(n?/2) with 424 ions and 1 million time steps.

C. Performance of Hybrid MPI/OpenMP

Figure 12 shows the strong scaling plot of the performance
of the hybrid approach with 424 ions and 1 million time steps
in the nanoconfinement program. From the experimental
results, Rabenseifner et al.s [6] claim that allocating all the
internal cores for OpenMP thread was validated and the
optimum number of OpenMP threads was selected to be
16 for any number of MPI processes since the experiment
was carried out in BIGRed IIs GPU nodes. Using the hybrid
methodology program, the runtime was reduced from 418
mins to 13.25 mins. The maximum speedup of 31.62 was
obtained when the experiment was carried out with 256
processes (16 MPI nodes and 16 OpenMP threads inside each
MPI node). This maximum speedup was calculated without
considering the execution time reduction gained from the
memory optimization techniques. The hybrid methodology
was also able to reduce the execution time from 69.5 hours

to 2.25 hours with a speedup of 30.88 when the nanoconfine-
ment program was executed for 10 million time steps with
424 ions.

Performance Results of the MPI/OpenMP Hybrid Approach

11 1,16 216 316 416 516 616 7,16 816 1616 24,16 32,16 40,16
Number of MPI processes, OpenMP threads

Fig. 12. Strong scaling plot of the performance of MPI/OpenMP hybrid
with 424 ions and 1 million time steps.

VI. CONCLUSION

This research considered pure MP, pure OpenMP and hy-
brid MPI/OpenMP models for a nonoconfinement simulation
framework. The pure MPI parallelization is based on domain
decomposition and the pure OpenMP parallelization is based
on loop level directives. The hybrid MPI/OpenMP model
utilizes one MPI process per node and OpenMP on the cores
of the node, with no MPI calls inside parallel regions. Several
memory optimization techniques were used to reduce the
execution time from 12 hours to 7 hours. The maximum
speedup obtained using pure MPI approach was 16.80 with
standard MD parameters. The pure MPI approach works
better when there are more number of ions associated with
the problem. The pure MPI approach was able to achieve
a maximum speedup of 41.86 when tested with 4242 ions.
Using the pure OpenMp O(n?) and O(n?/2) approaches, the
maximum speedup of 10.7 and 11.30 were obtained under the
standard default MD settings. The hybrid approach achieved
a maximum speedup of 31.62 with the best execution time of
13.25 mins with 424 ions and 1 million time steps along with
other standard MD parameters. The hybrid MPI/OpenMP
model has given the best performance result out of the three
approaches by reducing the execution time of the program
from 418 mins to 13.25 mins.

VII. REFERENCES

[1] Jing, Y., Jadhao, V., Zwanikken, J. W., and Olvera
de la Cruz, M. (2015). Ionic structure in liquids confined
by dielectric interfaces. The Journal of chemical physics,
143(19), 194508.

[2] Elliott, Gloria D., Regina Kemp, and Douglas R. Mac-
Farlane. ”The Development of Ionic Liquids for Biomedical
Applications Prospects and Challenges.” 2009. 95-105.

[3] Development of the Nanoconfinement Science Gate-
way

[4] Dagum, L., and Menon, R. (1998). OpenMP: an in-
dustry standard API for shared-memory programming. IEEE
computational science and engineering, 5(1), 46-55.

[5] Gropp, W., Lusk, E., Doss, N., and Skjellum, A.
(1996). A high-performance, portable implementation of the
MPI message passing interface standard. Parallel computing,
22(6), 789-828.

[6] Rabenseifner, R., Hager, G., and Jost, G. (2009,
February). Hybrid MPI/OpenMP parallel programming on
clusters of multi-core SMP nodes. In Parallel, Distributed
and Network-based Processing, 2009 17th Euromicro Inter-
national Conference on (pp. 427-436). IEEE.

[71 Mahinthakumar, G., and Saied, F. (2002). A hybrid
MPI-OpenMP implementation of an implicit finite-element
code on parallel architectures. the International Journal of
High Performance Computing Applications, 16(4), 371-393.

[8] Mahinthakumar, G., and Sayeed, M. (2005). Hybrid
genetic algorithmlocal search methods for solving groundwa-
ter source identification inverse problems. Journal of water
resources planning and management, 131(1), 45-57.

[9] Tang, G., DAzevedo, E. F., Zhang, F., Parker, J. C.,
Watson, D. B., and Jardine, P. M. (2010). Application of
a hybrid mpi/openmp approach for parallel groundwater
model calibration using multi-core computers. Computers
and Geosciences, 36(11), 1451-1460.

[10] Mininni, P. D., Rosenberg, D., Reddy, R., and Pou-
quet, A. (2011). A hybrid MPIOpenMP scheme for scalable
parallel pseudospectral computations for fluid turbulence.
Parallel Computing, 37(6), 316-326.

[11] Martys, N. S., and Mountain, R. D. (1999). Veloc-
ity Verlet algorithm for dissipative-particle-dynamics-based
models of suspensions. Physical Review E, 59(3), 3733.

[12] Rodgers, G. P., and Stewart, C. A. (2006). On the road
to petascale processing with IUs Big Red Supercomputer and
IBM BladeCenter H.

[13] Eranian, S. (2006, July). Perfmon2: a flexible perfor-
mance monitoring interface for Linux. In Proc. of the 2006
Ottawa Linux Symposium (pp. 269-288).

[14] Acklam, E., Jacobsen, A., Langtangen, H. P., and
Bruaset, A. M. (1998). Optimizing C++ code for explicit
finite difference schemes.

[15] Indiana University Indiana University Indiana
University. (n.d.). Retrieved November 12, 2017, from
https://kb.iu.edu/d/bcqt

